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STATISTICAL METHODS, SOME OLD, SOME NEW

A TUTORIAL SURVEY

Donald P. Gaver

This report is a revised and expanded version of material

on statistics presented at the Summer School on Remote Sensing in

Meteorology, Oceanography, and Hydrology, held at the University

of Dundee, Scotland during the month of September 1930; its direc-

tors were Professor A. P. Cracknell and Dr. G. Ostrem.

The attendees, both students and faculty, were from many

countries and professional and educational backgrounds. There

were, for example, physicists, electrical engineers, atmospheric

and geophysical scientists, physical geographers, photographers--

and two statisticians: Dr. Ed Wegman of ONR, Washington, and Dr.

Donald Gaver of the Naval Postgraduate School, Monterey, California.

The present report was largely assembled by D.G., with inputs from

E.W. A shortened version was placed on transparencies and formed

the basis for two one-hour-plus lectures.

Those who attended these lectures appeared to be quite posi-

tive in their response. It will be noted that no attempt was made

to present much formal mathematical material, perhaps to the lis-

teners' surprise. In view of the background of most oarticipants,

this seemed appropriate. An attempt was made to lead the listeners

into some of the approaches and concerns of the data analyst;

particularly one who might be working with "environmental" data.

In the course of talking to participants during the school, and

particularly following these lectures, I discovered that there



was a good deal of interest in statistical methodology for use

in the atmospheric and geophysical sciences. I hope to follow

up on some of the contacts made, and perhaps engage in collabora-

tive activities. There seem to be many who are interested, and

much to be done in applying statistical thinking and methodology

to the various, generally environmental, geophysical, or atmos-

pheric areas of interest represented at this exciting and stimu-

lating summer school.
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STATISTICAL METHODS, SOME OLD, SOME NEW

A TUTORIAL SURVEY

Donald P. Gaver

1. Introduction

The purpose of the two lectures with the above title is

to introduce to some, and review for others, selected topics in

statistical methQ,'s. It is hoped that these topics will be use-

ful to workers in remote sensing. Few details will be given,

but references will be provided so that those interested can go

further.

Statistics can be tentatively defined as the science,

technology, and art of drawing quantitative inferences from data.

The subject is always in a process of development, urged by the

needs of those who have, or plan to obtain, data, and further

stimulated by conceptual developments and the widening possibili-

ties of using digital computers for storing, analyzing, displaying

and finally understanding the meaning of that data.

1.1. Phases of a Statistical Inquiry

It seems useful to distinguish several phases of a

statistical inquiry
-oc~in -Fo r

o Objectives oF the inquiry, VTIS 0'A&I
STTC TA

o Data acquisition, IiiarLunced FAIju: ttrtcaticn----. .

o Data exploration,

o Model choice or construction, Distributlon/
AvsilablliY COids

o Confirmatory or validational analysis, .

o Communication of results.



Our term data acquisition subsumes the choice of what data to

take in a particular problem setting, experimental design for

economy and avoidance of bias, etc. This topic is crucially

important, but for this audience requires a substantive knowledge

of remote sensing issues that we do not yet possess. It will not

be discussed here. By data exploration is meant the activity of

examining data, both graphically and through numerical summaries,

for the purpose of revealing properties of the data itself, and,

with luck, of the process giving rise to that data. John Tukey,

e.g. (1977) has shown us that there is much to value and learn

about exploration of data before, or even without, the use of the

probability theory structure that has traditionally seemed so

necessary for formal statistics. We will discuss several of these

simple exploratory approaches in the first lecture. Model choice

or construction is the phase of inquiry that briihgs to bear sub-

ject matter knowledge to "explain" data behavior. Here probability

theory may well enter to represent measurement errors, or fluctua-

tions in natural phenomena, such as the heights of wind-driven

water waves. The confirmatory analysis phase is concerned with

developing quantitative expressions for uncertainties inherent

in simple summary statements, and in more complex characteriza-

tions and predictions made from formal models. This is the formal

inference phase to which mathematical (especially probability-

theoretic) methods continue to contribute.
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2. Simple Graphics and Summaries of Data

2.1. Stem and Leaf (Successor to Histogram); Transformation

Suppose we have a batch of measurements on some physical

quantity. We wish to display these numbers in frequency-of-

occurrence style, losing as little detail as possible.

Here is such a batch:

0.92, 1.14, 2.00, 2.66, 6.52, 4.95, 2.76, 2.13, 1.14, 9.72

11.24, 0.25, 3.31, 12.66, 0.46, 2.77, 0.35, 66.67, 0.59, 1.84

To get a stem-and-leaf display draw a vertical line (stem) and

decide on reasonable class intervals: first try intervals

0 - 10-, 10 - 20-, 20 - 30-, etc. Now put the integer part

of the number by convention (rounded to the nearest integer) to

the right of the stem, e.g. 0.92 becomes 1, 1.14 becomes 1,

...6.52 becomes 7, etc. The stem and leaf appears as follows:

0 1123532103030127
1 013
2
3
4
5
6 7
7

At the end there is a leaf of entries attached to the stem at 0,

1, and 7. Imagine that each leaf entry (single integer) occupies

one unit of area, and hence count frequencies are proportional

to areas, exactly as in the conventional histogram. Note that

greater detail concerning number identify is preserved by the

stem-leaf than is managed by the conventional histogram.

3

A.



Stem-leaf displays are usually constructed by making a

convenient but informal choice of leaf interval (here it was 10,

but for more detail it could be 5, and for more smoothness, hence

less detail, 20). A more formal approach, see Scott (1979), is

that of picking the bin size, hn , so as to minimize an integrated

mean-squared error of estimate of the true density by the histo-

gram. In summary, if the data is approximately Gaussian then

the prescription turns out to be

3.49 s
h nn /

where h is bin size for a batch of n, and where s is then

sample standard deviation. Observe that a few extreme outliers

in an otherwise Gaussian-appearing batch will unjustifiably expand

s, and over-coarsen the histogram. A robust estimate of a,

such as

=' (Upper Quartile)-(Lower Quartile)
1.35

might then be recommended instead of s.

A second, more basic, feature of the raw data and the

display is the crowding in the first class interval: numbers

like 0** are all jammed together, and there is evidence of

systematic (right) skewness. In such cases transformation of

the basic numbers before plotting is often useful, and in this

particular case a first attempt might be with logarithms (base

e = 2.7182..., but the particular base doesn't matter). Here

are the logged numbers:
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-0.083, 0.13, 0.69, 0.98, 1.87, 1.60, 1.02, 0.76, 0.13, 2.27

2.42, -1.39, 1.20, 2.54, -0.78, 1.02, -1.05, 4.20, -0.53, 0.61

Here we might try a scale of 0.5, so, rounding to the nearest

tenth of an integer:

Ranges Stem-Leaf

-1.5 -2 -1
-1.0 -1.5 -1 41
-0.5 -1.0 -0 85
-0. -0.5 -0 1
0. 0.5 0 11
0.5 1.0 0 786
1.0 1.5 1 0020
1.5 2.0 1 96
2.0 2.5 2 34
2.5 3.0 2 5
3.0 3.5 3
3.5 4.0 3
4.0 4.5 4 2

Notice that the previous crowding and skewness has nearly

disappeared, and we see revealed the vestigial appearance of

two separate "humps," as well as the originally apparent outlier

(kn 66.67 = 4.2). We are led to investigate the possibility that

the data derive from two separate sources, with one exotic (mis?)

measurement thrown in for good luck. In this form the data urges

more upon us than it did originally.

2.2. Number Summaries

Traditionally it has been customary to summarize certain

features of batches of measurements by moments: the (arithmetic)

mean gives the "location" of the data set, the standard deviation

summarizes "spread" (or "scale," or "width"), the third central

moment measures "skewness," and so on. However, certain apparently

more primitive measures are useful and have virtues.

5



Work with the observations after ordering them into

X (l) < (2) 'x(3) < ... < (n)

a) Median, M.

Compute the median index m = (l+n)/2. If n is odd

x is the middle (single) number, and if n even then average

the two middle numbers. Thus the median is

i X (mn) if n is odd,

M=

-(x( + ) if n is even
2 (in) ([m]+l)

where (m] is the integer part of m. Notice that quite radical

changes in extremes, e.g. x (l) or x (n)' effects M not at

all; in fact changes from x (n) to 1000 x (n), creating a very

isolated single observation, leaves M alone, so M is resistant

(un-influenced) by such changes, or occurrence of outliers. On

the other hand, the familiar mean responds dramatically and unde-

sirably and is far from resistant. Thus the median is a useful

candidate for "placing" or "locating" a rather concentrated batch

of points when several exotic, separated, extremes are present;

the mean is apt to strike a meaningless compromise. Of course,

the median does not well-summarize a batch having two or more

distinct but nearly equal-sized humps. But certainly it does no

worse than the mean. Later we discuss some better measures, and

also some for spread (alternatives to standard deviation).

6



(b) Quartiles: Lower = Q, Upper =

Roughly one-quarter of the observations fall below Q

(above Q). Define

1
q = (i+ [m])

Then

- X(q) if [m] is odd, as is integer

i(X +X([q])) if [m] is even

is defined analogously in terms of n-q +1. In other words

Q(Q) is the median of the lower (upper) half of the ordered

batch.

(c) Eighths: Lower = E, Upper =

About one-eighth of the observations fall below E (above

E) . Let

1
e = (i+ (q])

Then

X(e) if [q] is odd

E =1

[x x) if [q] is even
2 Ee) ([e+l)

and Eis defined analogously in terms of n- e+l1.

7
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(d) Extremes

There are simply

Ext =x(l) ,

Ext x (n)

A seven-number summary of the data is as follows:

QS = MQ-M
2 Q Q -Q

_ + E ME - M

E IExt+Ex-t MExt- M
Ext I Z - MExt I Ext SExt

\2 Ext-Ext

The quartile (eighth, extreme) means MQ(ME,.MExt) can be quickly

compared to M to detect systematic asymmetry or skewness.

Dimensionless measures of skewness are also given by the quanti-

ties SQ, sE, s
E Ext'

Example: x (1) = 1, x(2 ) = 3, x(3 )= 5, x (4)  x (5) 9,

x(6) ill.

1

Then m = -1(1+6) = 3.5, so
2

M = 1(5+7) = 6

Note that the mean x = 22.67. This neither-fish-nor-fowl

number has responded heavily to the isolated value 111. Next

8



q = 1(1+ [3.5]) = 2

so

Q =, and Q=9.

Now

e Il(i+ [2]) = 1.5

so
E 1 =- 1

1(1+3) = 2, and E. = 1(11+9) 60

The number summary then is

3! Q

r2 31 1 60_ 30 -6 0.43
I 11 -

130 - 656 I ill SExt III-1 = 0.45

The numbers suggest positive skewness, but closer examination

reveals that this is caused by the influence of one point alone.

Note that if the data is a sample from the Normal distri-

bution with standard deviation a, then convenient approximate

estimates of a are

1
Q) = oQ

and (E-E) 2.730 G

9



E-E
and thus Z 1.70

if data are approximately Normal; this is a handy check. An

up-to-date test for precise Gaussian behavior is that of Wilk-

Shapiro (1965). It involves a suitable linear combination of

ordered observations as a test statistic. A cautionary note:

critical values of the test statistic (rejection region) are

obtained on the basis of independence of batch data values,

often not an acceptable assumption in practice.

2.3. Box Plots

The box plot is a picture of the five-number (omit Eighths)

summary. Simply draw a rectangular box with ends at Q and Q,

and in which M is marked. In addition, connect up the extremes.

As was done with stem-leaf we arrange the "box" vertically.

Embellishments are sometimes useful: (i) it has been recommended

that box width be proportional to An to indicate effect of sample

size when comparing different batches, (ii) warning points at

Q+1.45(Q-Q) and Q-1.45(Q-Q), something like "fences" of

Tukey: if the data are Gaussian there is only about one percent

of the data "outside" these values. Box plots are especially good

for giving a quick appreciation of comparative distributional

behavior for different batches.

10



Simple Box Plot

Ext

M

Q

Ext

0

0 __ ____ ____ ____ ___ ____ ____ ____ ___

lp.

_ 2 !o. !D_ 2- . ,i i -.. .. .. ,Z .- ;2 2 ; 1 . .. . .- .



2.4. Rooted Histograms ("Rootograms")

Hark back to the histogram over bins of width h, with
th

n. observations in the j- bin. The standard error of (nj/n),

the frequency estimate of

p= Probability of an observation in the jth bin

= x.+1 h+x. (x)dx f(x+h/2) h

x.J

is at least under random sampling,

1/2 -1 1/2{pj(1-pj)/n} I/ 2  J {(nj/n)J(-nj/n)n

which suggests that the magnitude of the sampling fluctuations

in the high-count (large pj) bins may be much larger than those

in the low-count bins; on the other hand, the relative fluctua-

tion magnitudes are greater in the low-count bins. The square-

root transformation, r'nn, tends to stabilize (equalize) this

variation: /ii3i tends to estimate / with standard error

of about 0.5. This suggests several possibilities for useful

graphical analysis:

(1) Smoothing a raw histogram by smoothing /i7ii- values and

re-squaring the results, as possibly in

3rn n

so the estimate of pj becomes

PjS 2

12



Other approaches, such as running medians, (see Tukey

(1977), p. 543 ff.) are likely to be effective. The

attempt is to reduce sampling fluctuations without resort-

ing immediately to the "ultimate smooth:" a simple model.

(2) Assessing model fit by a hanging rootogram. Having a model

distribution in mind, perhaps suggested by theory, we wish

to graphically present the evidence for and against it

using a histogram of data. To this end, plot

h

this is equivalent to looking at a plot of the square root

of the density, with roots of the histogram values hanging

from it. If the model is in basic agreement with the data

then about 95% of the values of the differences A. shouldJ

lie within unit distance of zero. These differences "should"

also be nearly pattern-free as order goes. Departures

vividly show exactly where the model and the data disagree.

Thus the procedure has a focus, and a specific diagnostic

slant. It can clearly be used for histograms in more than

one dimension.

The above idea, also due to Tukey can be extended to supply

a formal test of goodness of fit analogous to the classical Chi-

squared test. At the moment the concern is with graphically

exposing data features and with indications of model-data

discrepancies.

13



3. More Summary Measures

In Section 2 we worked with the median, M, as a summary

measure of location, and with the midspread Q- Q as a summary

measure of distributional spread. Of course the classical measures

would be the mean, x, and standard deviation, s(= 4 ( 2)
i=l

The latter are suspect because of their sensitivity to occurrence

of a few wild values--perhaps recording errors. Here are some

currently well-regarded alternatives.

3.1. Winsorized mean; confidence limits

Suppose a set of nearly symmetrically distributed

observations are in hand. If a small number of outlyina observa-

tions are feared one can diminish their impact by symmetrically

Winsorizing to level g (g5 0.20n, n being number in the batch):

(a) Order the batch

x < X < <x xx<.<
X(1) (2) < < x(g) < x(g+l) < < x(n-g) < x(n-g+l) (n).

(b) Winsorize, level g:

y( 1 ) = y( 2 ) = "" Y(g) = x(g+l) < Y(g+l) = (g+l) < y(g+ 2 ) <

Y(n-g) = X(n-g) = Y(n-g+l) = Y(n-g+2) = "'" = Y(n)"

In other words, define the g smallest in the Winsorized batch

(y's) to equal the gL smallest raw data point, x (g). Do

the same symmetrically at the upper end. The result will be tied

values (g at bottom, g at top).

14



(c) Average, to get a g-Winsorized mean:

1 n
XWg = Yi

i=l1

Notice that if n is odd and you Winsorize to the extent

n-ig = T the result is precisely the median. The Winsorized

mean can be viewed as a broadened median, with a median's vir-

tues (oblivious to outliers), but that uses more of the sample

information. Winsorizing is named for C. P. Winsor, an insight-

ful applied statistician.

(d) Confidence limits using the Winsorized mean.

Confidence limits attempt to express the uncer-

tainty inherent in a particular estimate of a fixed quantity

(such as mean radiation, mean visibility, etc.). If one is

estimating the mean, p, of a symmetric distribution (possibly

after transformation), and if the observations are independent,

then it is appropriate to use the classical Student's t (or a

Gaussian approximation): with confidence (not probability) of

(i-M) • 100%,

X+ t/2(n-l)- 1 X + tl_-/2(n-l)--

where ts(n) is the " 100% point of a Student's t with n

"degrees of freedom;" x and s are the sample mean and standard

deviation, respectively. Such intervals are reasonably satisfac-

tory even if the data are not quite Gaussian, but if there are

some extreme outliers, s blows up and the intervals are much

15



too wide. One should also compute the Winsorized limits: after

computing Xwg find

2 1 - 2n - (y(i) Xwg) 2Swg n-l .~ =g

and then find the confidence limits

XWg+ ta/2 (n - 2 g - l ) s -i - Wg n-2g-ll)tl-a/2 (n-2g-i) s -g '

These may be decisively narrower; if so, look for outliers. Pick

a succession of g-values, but not to exceed 0.20n.

For more details, see Dixon and Tukey (1968) and Dixon and

Yuen (1973).

3.2. Biweights

The Winsorizing procedure has to a degree been supplanted

by a procedure called biweights. This involves an iterative least-

squares calculation with weights on individual observations that

decrease as the degree apparent non-representativeness (exoticizm)

of a data point increases. Let xl ,x2,.. ., xn be data points;

then here ir a recipe for fitting a resistant center via biweights:

referring to the k + i st  iteration in terms of the k t h,

n
i wi ( k ) xil 1

N(k+l) =
n
; wi (k)i=l

I

where the weight of observation i is

16



)2 2 )2
- (k) xi -  x(k)2I s CSk

wi (k)=

0 otherwise.

and sk is a spread-measure, perhaps

sk = median{Ix i - x(k)I}

the so-called MAD or median absolute deviation, or alternatively

thtsk = k - Rk

the midspread of the residuals at the k-h stage. These estimates

are essentially equivalent. Here c is a tuning parameter; a

value of c = 6 or 9 has been recommended for general use, while

c = yields up the OLS estimates.

17
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4. Relations Between Variables, Models, and Model Assessment

The discovery and establishment of quantitative relation-

ships between measurable, or classifiable, variables is a primary

scientific concern. Once a relationship is uncovered it is soon

likely to be thought to be potentially useful for some human

purpose, and attempts will be made to apply it. Many examples

exist in the remote sensing area. Of course the quality, or

strength, of the relationship must be such as to make its appli-

cation feasible. Statistical methods and thinking are frequently

used, sometimes very informally, to help in finding a relationship

and to expressing it in succinct, often, formally mathematical

terms (as a mathematical model), to characterizing its deficiencies

or biases, and to expressing the uncertainties inherent in its

use. Here is a brief review of some of these methods.

4.1. Graphical Plotting for Relationship Exploration

Many relationships between variables are initially

guessed from scientific theory; or at least from subject-matter

knowledge, intuition, or low cunning. When relevant data becomes

available the obvious first step is to plot it graphically, if

possible. This is easy if the relationship of interest is between

two variables: x, an explanatory variable, or condition (some-

times called factor, or lately carrier) and y = f(x), a response.

Suppose one has observed pairs of these variable values:
yi,xi;i=l1,2,...,n. Then plots of f(xi ) vs x and yi vs xi

on the same graph (e.g. rectangular coordinates) are sometimes

presented for comparison. Since the range of f(x)--and y--may

be considerable, such plots often obscure real systematic differ-

ences, it is often wise to plot and study residuals K

18



ri Yi - f(xi)

either vs xi , or vs Yi = f(xi; plotting residuals vs^1

estimated values Yi is one of the obvious ways of evaluating a

relationship depending on several explanatory variables. Examina-

tion of a plot often reveals some systematic departure from

linearity, such as a definite curvature may become evident;

frequently this may be essentially removed by transformation

(alternatively called re-expression). This is a good idea, for

comparison of plots to straight lines (looking at residuals from

straight lines) seems well adapted to human perceptions. The

powers y - yP(p>l, or p<l) or y - kny (zero power) are often

recommended for transformation to the nearly linear. Of course

theory (e.g. the laws of physics, such involving squares, etc.)

may point the way to an approximate linear plot. Then systematic

deviations may be identified and interpreted on their own merits.

19
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4.2. Relationship Fitting

Although the mathematical form of the relationship

between response y and explanatory variable x may suggest itself

from theory, certain constants (parameters) nearly always require

numerical determination. This means that a mathematical model r
exists, and must be fit to the data. Afterwards, one can look

at residuals for indications of mis-fit, or apply the model to

make predictions and check out its errors. One can sometimes

segment the data, utilize a part to fit the model, and then use

the remainder to examine the performance of the fitted model.

This latter procedure is called cross-validation. Again residual

plots are desirable diagnostics.

The actual fitting (constant,or parameter, estimation)

problem can be carried out in various ways. We illustrate in

terms of a postulated simple linear relation between response, y,

and explanatory variable, x, i.e.

y = a +bx

with a and b to be determined. Here are some options.

o Simple least squares

o Median, two-points

o Biweights

Given a set of (yi,xi) data,least squares proceeds by minimizing

the sum of squares

n 2
(Yi-a-bxi)

20



by choice of a and b. Linear equations result for estimated

a, namely aLS and estimated b, namely 6LS. Many computer

programs exist for doing this problem, and also for doing the

multiple regression problem: fit

yj,j=l,2,...,n by 0+ 1l +~ 82 x2j +.. pip

For better or worse, any set of data can be conveniently fitted

by such a linear function, i.e. the parameters B0,eI .... IP

can essentially always be determined numerically, whether or not

the postulated relationship makes sense. Furthermore, the esti-

mates, 8i, turn out to be linear functions of the yj values.

This suggests that 8i values also respond linearly to changes--

perhaps even unfortunate or unsuspected discrepant values or

errors--in the yj values, and so a few funny values can qive

a warped picture:

XX Least-Squares Line

x

The fitted line may not follow the main data cluster, but instead

fasten itself to a single exotic point. For some discussion of

this and remedies see Mosteller and Tukey (1977) and also Belsley,

Kuh, and Welsch (1980).

The second method mentioned ("median, two-points")

avoids some of the above difficulties. Prescription: order the

explanatory variables from smallest to largest: x (1) < X (2)

21
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X(n/3) x (n/3+l) < x( 2 n/ 3) < ... X(n )  Call the set of

values X(l) , x( 2 )I,.. X(n/3) the low group, and X( 2 n/ 3 ) X(2 n/ 3 +l)

X(n), the high group. Let x be the median of the low

group, and xh be the median of the high group. To each member

of the low group there is a y; let y be the median of the

corresponding low y's, and Yh be the median of the high y's.

Now fit:

MED - Xh- X

aMED = Yh - bMED Xh

This procedure is a modification of an ancient procedure that

utilizes means instead of medians. Since medians are more resistant

to outliers than means, this procedure is a move in the right direction.

The third option ("biweights") is an iteratively weighted

least squares approach. It has been programmed for many computers,

including evan a hand-held TI-59. This procedure develops a weight

for each observation; the weight diminishes as the observation

becomes apparently discrepant, as in the earlier discussion.

Details are omitted here.

Example. Sea-surface wind speed and white-cap coverage.

It has been proposed by Monahan (1971) that magnitudes

of sea-surface winds and white caps are strongly related. Pre-

sumably white-cap coverage can be assessed remotely, and wind

speeds deduced there from. A set of data offered by Toba and

Chaen (1971) has been analysed using the above methods. An
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appealing functional form is the power law

y = ax8

it has been argued on theoretical grounds; 8 is supposed to be in

the neighborhood of 3. A computer scatter plot shows that this is

1/3rplausible. An initial cube-root transformation (y vs x,

equivalent to the model y = ax3) seems to straighten the plot

reasonably well, but note that a few zero values occur; other

outliers are less obvious.

It is natural to try to fit the log-transformed version

of the power law, for this is now linear:

kny = £na+$Znx

Here are some results (OLS means Ordinary Least Square, Bi(i)

means the biweight result after i iterations, s. means robust

scale after i iterations); note that it has been necessary to

fit £n(y+ start), start = 0.001 here, in order to avoid the

embarrassment of logging exact zeros. The "start" value can be

chosen wisely; no attempt to do so is exhibited here, however.

PARAMETER FITS FOR LOG-LINEAR MODEL OF WHITE CAPS vs WIND

Estimate

Method 9,n a 8 si

OLS= Bi () -9.65 3.51 1.44

OLS (zeros out) -10.31 4.22

Bi (2) -10.73 4.24 1.26

B.(4) -11.32 4.68 1.05

Bi(6) -11.39 4.25 1.03
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Apparently the biweight calculation yields quite different results

from OLS, even after visual culling of apparent zeros has been

conducted. It would be of interest to utilize the techniques of

Cook (1977) and Belsley, Kuh, and Welsch (1980) to further identify

influential observations. Of course the present setup is simple

enough so that visual examination will reveal most of what is

present. This would not necessarily be so if the explanatory

variable were a vector.

Some computer plots are included to show that the biweight

procedure provides fits that tend to dramatically reveal the

presence of outliers. In many cases the presence of such outliers

represents opportunity for new insight and discovery, as is pointed

out by Tukey (1977). Outliers should never be immediately "thrown

away," but rather are candidates for special attention. See

Kruskal (1960) for some wise discussion of this issue.

4.3. Fitting Probabilities and the Like

It is often appealing to explore the relationship between

the probability of some environmental (or other) event and some

reasonable explanatory variables. This amounts to estimating

conditional probabilities. Often the events in question are of

the form "rain," "fog," "visibility in the range 0-5 kilometers,"

etc. Candidate explanatory variables may be the product of a

remote sensing system, or a numerical weather forecasting scheme

("model output statistics"), or a combination thereof. Some

attempts to use persistence ("it rained in Monterey on January

14, so the probability of rain on January 15 is *+0.2, whereas

without rain it is *") are also appealing. In the latter form

the simple idea of Markov chains has been employed.
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Ordinary linear regression has been used to predict

event probabilities, e.g. the REEP scheme of R. G. Miller (1964).

This has the aesthetic difficulty that probabilities are between

zero and 1, which ordinary regression doesn't recognize. Two

ways of dealing with probability regression problems are as

follows:

o logistic regression

o conditional probabilities.

In logistic regression one utilizes the simpie model

a+bx
P{event Elexplanatory variable X=x -: (x) - e a+hx

l+e

where a and b are constants to be determined. Although this

model has been written in terms of one explanatory variable,

multiple regression options are available. One can contemplate

fitting the logistic model in several ways:

(i) By maximum likelihood. Suppose the explanatory
th

variable takes on value x. on the i- occasion, and a success1

(event, e.g. rain) occurs, i = 1,2,..., n happenings occur.

Then the likelihood of the a,b usinq the data (6i, xi,
i ifevent occurs

i=i,2,...n), where 6. if , is seen to be
0 otherwise

n I a+bxi 6 i 1i.

L(a,b;x) = 1/ea+bxi
idl1+ea1 ( ea+bx

or

n n a+bx.

£(a,b;x) = En L = 6i(a+bx) - [ £n[l+e I

i l i=l
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Differentiation, then solution for a, b yields maximum likelihood

parameter estimates. See Cox (1970), and, recently, mcCullagh (1980).

Precibon (1920) has generated robust procedures.

(ii) By grouping. If the data set is large one can

order the x's, split the ordered values into an equal number

of groups, g, calculate the frequency of successes in each
^ n .

group Pj = 47- where n. is the number of successes in group

j and n is the total number of observations. Now let x. be

a representative explanatory variable value for group j; the

median may be appropriate. Note that

yj = Zn ( /(l-pjA vs a+bx

should be nearly linear if the logistic relationship holds (if

not, try a transformation). In any case it is linear in the

parameters, so a fit can be readily made and diagnostically

viewed. One can even fit the above by weighted least squares,

or perhaps biweights. Such procedures are under investigation

at the Naval Postgraduate School by the author and Dennis Mar;

they seem promising. See Cox (1970), especially Chap. 3, for

some good discussion. The procedure can be made multivariate

(x a vector), provided there is a good deal of data.

Notice that the above method handles only dichotonous

situations ("rain, no rain," "visibility in category (*), visi-

bility in catagory (not {*})). A multiclass version of the

above has been devised by P. Bloomfield, J. Lehoczky and the

author (possibly also by others) and is under development.
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Another approach to the multiclass problem is by conditional

probabilities. Suppose E. is the event that an observation

(e.g. of visibility state) lies in class j (j= 1,2,...,C), and

x. is the corresponding explanatory variable value. One can

construct an estimate of the density function given that E. has
3

occurred, f(x.jEj), for each class, j = 1,2,...,C; the histo-

gram, raw or smoothed (c.f. Wegman (1979)), or a simple model

(normal, lognormal, etc.) may do well. By Bayes' theorem, then

f(xIE.)P{Ej}
P{E jx} = C

[ f(xIEj)P{E.}
j=l

here P{Ej} is the overall marginal probability of an event in

class j, estimable from history. Such an approach is under r
empirical investigation by the author, utilizing some meteoro-

logical data.
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5. Time Series

Many of the data sets encountered in studies of the natural

environment have distinctive time-series structure. This means

that successive observations in time (and contiguous observations

in space) are likely to be rather similar or correlated as a

result of both (a) important natural phenomena associate system-

atically with seasons, years, geographical places, and forces of

nature, and also (b) what may be considered to be the haphazard

superposition of a variety of additional effects, among which may

be measurement error. These latter effects typically do not

appear independent from observation to observation, a fact that

represents both opportunity and difficulty in statistical analysis.

In the present section we review a few basic notions and concepts

in time series analysis. The topic is subtle, and deserves more

than it gets in this discussion.

5.1. Components of a Time Series

One way of thinking about a time series, say of monthly

total precipitation at a point in space, or visibility at a point,

is in terms of the simple components

o (apparent) trend systematic effect

o (apparent) seasonal effect I

o (random) disturbance or noise.

The trend ideally represents a systematic long-term change;

"apparent" is appended because a steady trend may actually be

quite impermanent, giving way to a new and different trend. Think

of the economy, particularly the stock market indices. Mean sea

levels measured by tide gauges are also of this nature, possibly
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because a regime of slow, regular, changes in land supporting a

tide gauge may rather suddenly be supplanted by a different

regime, perhaps the result of human activity. Sometimes a trend

may be taken to be linear, at least provisionally. The seasonal

effect often seems inevitable: ordinarily it rains in the winter

in Monterey, and not in the summer. Tides behave in accordance

with time of day, with a slow trend superimposed. Left over is

the contribution of random disturbance or noise, which represents

the joint influence of other conditions, including measurement

error. Interestingly, the latter random component has received

more sophisticated mathematical-statistical attention than have

the other components. Understanding trends and seasonals

(apparently systematic effects) probably depends upon understand-

ing the underlying subject-matter area.

5.2. Decomposition

Investigation of a time series zt , t = 1,2,...

ought to begin by a study of graphical display. The inter-rela-

tions between several series is often suggested by such an approach.

Suppose one wishes to isolate the semi-permanent component of the

series (trend and seasonal). This can be approached in the

following ways:

o Fit a specific function to the trend,

o Smooth, either non-robustly or robustly.

If a plot shows a nearly linear trend (perhaps after transforma-

tion, e.g. by logs) one can fit

z t vs a +bt t
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by least squares. Now if the true situation were well-represented

by the model

Zt = a + bt + et

with {et, t=l,2,...} a sequence of non-independent random

variables with, nevertheless E[et] = 0, var[ t] =  , the

Ordinary Least Squares is less than perfectly efficient. However

it is ordinarily a useful approach--maybe all that is available.

Once aLS, bLS are available one can subtract away the fit,

leaving the residuals

rt zt - aLS-bLSt (- Et).

for study. If the trend removal has been effective, and no inter-

vening seasonal has occurred,the rt's will have roughly constant

variation for all t (box plot segments of the series for diagnosis),

and a characterization or study of the rt' s is in order. Note

that if the covariance function

T-1 rt r tf(T) T T- r t +T
t=l

remains and diminishes only slowly as T increases this signifies

substantial similarities between observations separated in time

contributed by something (here it is assumed to be the noise com-

ponent, although it might well be an un-removed contribution by

seasonal, or a change in trend). Often f(T) looks something

like this
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f(T)

>T

5.3. Noise Models

It is convenient to employ simple parametric models

to describe noise behavior. Here are several

o Simple Markov or Autoregressive: ct = Pct 1 + at,

{at, t= 1,2,...} is "white noise," a sequence of

independently Gaussian variables.
a +a +... a

o Simple Moving Average: et = t + 1

p an integer i_ 0.

o Autoregressive-Moving Average (ARMA (1,1)):

t - Pt_1  = at - Oat_ 1

It is well to start with the simple Markov, for which one may

estimate p from the residuals by

T

t=l1

The theoretical autocovariance function of the Markov (AR) is

actually

f IrI = 0,,2,....

so as a check (P) should die off exponentially. A plot on

semi-log paper is helpful for a check.

31

I.



Although least squares may provide reasonable estimates

for parameters a and b, the attempt to use the sum of the

squares of the residuals to estimate a2  (noise variance), and

then to use this estimate in conventional formulas for standard

errors and confidence limits for a and b is often a bad

mistake: the "standard" results, such as those found in regres-

sion packages at computer centers, are likely to give wildly

optimistic (falsely precise) results. Such effects have been

noticed by Abreu (1980) in an investigation of sea level trends

on the U.S. Pacific Coast.

Note that if a linear trend has been fitted by OLS,

and the residuals appear to be AR(M), then the variance of the

slope term estimate, bOLS, is approximately that given by the

OLS formulas appropriate for purely random noise, multiplied by

(+ For more detail see Bloomfield (1980).
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APPENDIX

The purpose of this appendix is to report the results of

simulation tests of the performance of Winsorized t confidence

limits as compared to ordinary Student's t. In particular,

comparative performance is reported, as measured by (i) confidence

interval coverage (fraction of intervals actually containing the

true value of the mean), and (ii) confidence interval average

(estimate of expected) width.

o Simulated Data. The "data" were obtained as follows.

Alternatively,

(a) Samples of size n = 20 from Normal (0,1). The

random variable of which the observations are

independent instances will be called Z.

(b) Samples of size n = 20 from the distribution of

Y = Ze , h > 0. The y-values are more spread

out (but still symmetrically so) than are the basic

z's, in order to represent long, fat, tails possibly

resulting from outliers. The above convenient form

has been suggested by Tukey.

(c) Samples of size n = 20 from the distribution of

W = (egZ-1 )/g
', the latter being recognizable as

the asymmetric log-Normal form.

o Experimental Sampling. Suppose that a sample is available

(from one of the above situations, but the exact source being

unknown), compute confidence limits for the mean of the parent
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distribution, using (A) ordinary Student's t, and (B) Winsorized

t, using g = 2, i.e. the lowest two values were given the value

of X(3 ), and the highest two values the value of x(1 8) Do so

repeatedly (k = 1000 times at present) and compare for (i) cover-

age to nominal (here 95% two-sided) and (ii) average width of

confidence intervals. These parameter values were examined:

g' = 0.2, h = 1,00, and h = 2.00

o Results of the Sampling Experiment.

Case g' h Method Coverage(%) Av. Width

Normal (Z) 0 0 Student 95.5 0.92

Long-Tail (Y) 0 1.00 Student 99.3 8658

Skewed (W) 0.2 0 Student 94.8 0.95

Long-Tail (Y) 0 1.00 Winsor(2) 96.4 8.46

Skewed (W) 0.2 0 Winsor(2) 95.3 0.98

Long-Tail (Y) 0 2.00 Student 99.8 4.3xi01 0

Long-Tail (W) 0 2.00 Winsor(2) 98.0 548

o Conclusions. Obvious indication of the efficacy of Winsor-

izing long-tailed (Y) observations as compared to traditional

student's t. At that, the level of Winsorization (g= 2) is

probably too small, and a larger value would provide valid

narrower, intervals. Alternatively, utilize biweights.
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